Extensions 1→N→G→Q→1 with N=C22xDic3 and Q=D5

Direct product G=NxQ with N=C22xDic3 and Q=D5
dρLabelID
C22xD5xDic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C22xDic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22xDic3):1D5 = C2xD10:Dic3φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):1D5480,611
(C22xDic3):2D5 = (C2xC30).D4φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):2D5480,612
(C22xDic3):3D5 = C2xD30:4C4φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):3D5480,616
(C22xDic3):4D5 = C10.(C2xD12)φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):4D5480,618
(C22xDic3):5D5 = Dic3xC5:D4φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):5D5480,629
(C22xDic3):6D5 = C15:28(C4xD4)φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):6D5480,632
(C22xDic3):7D5 = (C2xC6):D20φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):7D5480,645
(C22xDic3):8D5 = C2xDic5.D6φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):8D5480,1113
(C22xDic3):9D5 = C22xC3:D20φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):9D5480,1119
(C22xDic3):10D5 = C22xD30.C2φ: trivial image240(C2^2xDic3):10D5480,1117

Non-split extensions G=N.Q with N=C22xDic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22xDic3).1D5 = C30.24C42φ: D5/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).1D5480,70
(C22xDic3).2D5 = C23.26(S3xD5)φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3).2D5480,605
(C22xDic3).3D5 = C2xC30.Q8φ: D5/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).3D5480,617
(C22xDic3).4D5 = C2xDic15:5C4φ: D5/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).4D5480,620
(C22xDic3).5D5 = C2xC6.Dic10φ: D5/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).5D5480,621
(C22xDic3).6D5 = (C2xC10):8Dic6φ: D5/C5C2 ⊆ Out C22xDic3240(C2^2xDic3).6D5480,651
(C22xDic3).7D5 = C22xC15:Q8φ: D5/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).7D5480,1121
(C22xDic3).8D5 = C2xDic3xDic5φ: trivial image480(C2^2xDic3).8D5480,603

׿
x
:
Z
F
o
wr
Q
<